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A B S T R A C T

Large neural-based Pre-trained Language Models (PLM) have recently gained much attention due to their
noteworthy performance in many downstream Information Retrieval (IR) and Natural Language Processing
(NLP) tasks. PLMs can be categorized as either general-purpose, which are trained on resources such as large-
scale Web corpora, and domain-specific which are trained on in-domain or mixed-domain corpora. While
domain-specific PLMs have shown promising performance on domain-specific tasks, they are significantly
more computationally expensive compared to general-purpose PLMs as they have to be either retrained or
trained from scratch. The objective of our work in this paper is to explore whether it would be possible to
leverage general-purpose PLMs to show competitive performance to domain-specific PLMs without the need
for expensive retraining of the PLMs for domain-specific tasks. By focusing specifically on the recent BioASQ
Biomedical Question Answering task, we show how different general-purpose PLMs show synergistic behaviour
in terms of performance, which can lead to overall notable performance improvement when used in tandem
with each other. More concretely, given a set of general-purpose PLMs, we propose a self-supervised method for
training a classifier that systematically selects the PLM that is most likely to answer the question correctly on
a per-input basis. We show that through such a selection strategy, the performance of general-purpose PLMs
can become competitive with domain-specific PLMs while remaining computationally light since there is no
need to retrain the large language model itself. We run experiments on the BioASQ dataset, which is a large-
scale biomedical question-answering benchmark. We show that utilizing our proposed selection strategy can
show statistically significant performance improvements on general-purpose language models with an average
of 16.7% when using only lighter models such as DistilBERT and DistilRoBERTa, as well as 14.2%
improvement when using relatively larger models such as BERT and RoBERTa and so, their performance
become competitive with domain-specific large language models such as PubMedBERT.
1. Introduction

Large Pre-trained Language Models (PLM) have significantly influ-
enced the performance of many Information Retrieval (IR) and Natural
Language Processing (NLP) downstream tasks [1–3]. BERT has shown
to be a notable example of such PLMs especially because its pre-training
process is performed in a self-supervised manner over an unlabelled
corpus [4]. General-purpose PLMs are often pre-trained on general
domain corpora such as the Web, book corpora, Wikipedia, and news
corpora, among others. More recently, researchers have began looking
into developing domain-specific PLMs that would capture the detailed
semantics of specific domains. Authors such as Gu et al. [5] argue
that the development of domain-specific PLMs is essential since using
general-purpose PLMs is only warranted when (1) the target and source
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domains are highly homogeneous and comparable; and, (2) training
data for the specific domain under consideration is in short supply [6–
11]. Therefore, they argue that for domains such as biomedicine, which
enjoys abundant publicly available unlabelled corpora, continuing pre-
training from a general-purpose PLM, i.e., mixed domain pre-training,
can be a questionable endeavour and in some cases such a transfer
learning strategy could even be harmful [5]. As such, they hypothesize
that once there is a sufficient amount of in-domain training data,
training domain-specific PLMs from scratch can lead to significant
boosts on domain-specific tasks compared to continuing pre-training of
a general-purpose PLM.

Empirical studies show that performance improvements are in fact
observed quite significantly when training domain-specific PLMs from
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scratch [5,12,13]. However, in this paper, we argue that the perfor-
mance improvements shown by domain-specific PLMs come at notice-
ble costs. The first of these costs relates to the fact that training a
omain-specific PLM from scratch is computationally expensive. For
nstance, PubMedBERT [5], which is a biomedical PLM that was
rained from scratch on PubMed1 abstracts, has been trained on 16

v100 GPUs on a DGX-2 machine, which costed over $400K USD to
complete. Such powerful computational resources are hard to access
for many researchers and institutions. The second cost is that training
a domain-specific PLM is not only computationally expensive but it
is also extremely time-consuming. For instance, the domain-specific
PLM, namely PubMedBERT, was trained for five days on the above-
mentioned computational resources. Last but not least, while domains
such as biomedicine have a sufficient amount of publicly available
corpora for training domain-specific PLMs, their availability of re-
sources across the subdomains of biomedicine is not evenly distributed
and some areas face significant privacy considerations to use their
biomedical data to train PLMs.

On this basis and in this paper, we are interested in exploring
whether and how one could leverage possible synergies between var-
ious general-purpose PLMs in order to make their collective perfor-
mance on domain-specific downstream tasks competitive to domain-
specific PLMs. We are specifically seeking to study whether it would be
possible to (1) enhance the performance of domain-specific tasks when
utilizing general-purpose PLMs; and, (2) design a strategy for using
different general-purpose PLMs in order to obtain competitive per-
formance in comparison to domain-specific PLMs on domain-specific
tasks, specifically on the biomedical question task.

In summary, we argue that training a domain-specific language
model is not always feasible, and even so, it would be very expensive to
train domain-specific language models. Therefore, it is necessary to be
able to employ general-purpose PLMs to improve their performance on
domain-specific tasks. As such, we propose a simple yet effective strat-
egy to benefit from the strengths and the complementarity behaviour of
general-purpose language models. We note that while in highly critical
domains such as healthcare and finance, performance improvements
could be considered to be more valuable than computational cost,
abundant data for training may not be available for some other domains
such as those related to the legal or enterprise applications, mostly due
to privacy issues. Here, we target the biomedical domain as a specific
domain and we show that it is possible to achieve better performance
without utilizing domain-specific PLMs. We leave further exploration
on other domains for the future studies.

In this paper, we run experiments on the BioASQ7b and BioASQ8b
datasets, which are large-scale biomedical question-answering bench-
marks. We show that general-purpose PLMs can complement each other
leading to better overall performance on these datasets. More specifi-
cally, we demonstrate that utilizing our proposed strategy can boost
the performance of general-purpose language models on biomedical
question-answering tasks in a statistically significant way with an av-
erage of 16.7% when using only lighter models such as DistilBERT
and DistilRoBERTa, as well as 14.2% improvement when relatively
larger models such as BERT and RoBERTa arre used. Additionally, we
show that the performance obtained through this process is competitive
with domain-specific PLMs, such as PubMedBERT yet does not require
as many resources to be trained.

The rest of this paper is structured as follows. In Section 2, we
review the literature on domain-specific language models, specifi-
cally in the biomedical field. Next, in Section 3, we define the prob-
lem of general–purpose language model selection for domain-specific
tasks. Further, in Section 4, we study the complementary behaviour of
general-purpose PLMs in addressing biomedical QA tasks. We propose
a self-supervised selection strategy between general-purpose language
models in Section 5 and describe our methodology in this section. We
discuss the details of the experimental setup and show the results of
our proposed approach in Section 6. Finally, we conclude the work and
2

point out potential future works in the last section.
2. Related work

2.1. Domain-specific language models

Previous research have demonstrated that when addressing a
domain-specific task, pre-training with in-domain data can usually
lead to better performance [5,12,14]. Such research shows that while
continuing pre-training a general-purpose language model for domain-
specific tasks sounds reasonable, it may suffer from problems such
as lack of domain-specific vocabulary. Therefore, for domains that
enjoy abundantly available data, such as biomedicine and specifically
biomedical question answering [15–17], researchers tend to favour
training domain-specific language models on in-domain data such as
those available through PubMed [18–20]. As expected and similar to
other domains, work on PLMs for the biomedical domain has shown
that having domain-specific language models can actually lead to
improved performance on downstream biomedical NLP tasks [12,13,
18,21–23].

Various biomedical PLMs have been recently proposed, which in-
clude BioBERT [13], BlueBERT [21] and BioClinicalBERT [24] to
name a few. These methods are also known as Mixed-domain Language
models and are initialized from a general purpose language model
such as BERT and are then continued pre-training on domain-specific
data. For instance, BioBERT is based on the continued pre-training
of BERT on PubMed abstracts and PubMed Central (PMC) full-text
rticles. BlueBERT is based on BERT with continued pre-training on
ubMed as well as de-identified clinical notes from MIMIC-III [25]. In
ddition, BioClinicalBERT is another recently proposed domain-
pecific language model that has been continued pre-training on MIMIC
ataset [24,25]. From an empirical perspective, Gu et al. [5] have
tudied the impact of utilizing domain-specific vs general-purpose lan-
uage models for tackling domain-specific tasks with a focus on the
iomedical area. They investigated whether in-domain pre-training,
.g., pre-training from scratch on domain-specific corpora such as
ubMed, can surpass pre-training on general-purpose or mixed-domain
orpora. Due to the diversity of NLP tasks and available datasets,
onducting a fair comparison between different PLMs and their core
mpact on various tasks can be quite challenging. Thus, to make such a
omparison, it is required to have a valid benchmark with predefined
asks and gold standards. Therefore, inspired by BLUE [21], Gu et al.
resented a comprehensive Biomedical Language Understanding & Rea-
oning Benchmark (BLURB)2 with a focus on PubMed-based biomed-
cal applications. BLURB constitutes an exhaustive set of biomedical
LP tasks, including named entity recognition (NER), evidence-based
edical information extraction (PICO), relation extraction, sentence

imilarity, document classification, and question answering. Based on
LURB, these researchers showed that training a domain-specific PLM
rom scratch outperforms other general-purpose or mixed-domain PLMs
hen fine-tuned on each task.

One of the tasks in BLURB which shows a great performance gap
hen using a general-purpose language model compared to when a
omain-specific PLM is used is the Biomedical Question Answering
QA) task [5,26]. Empirical work has shown that biomedical QA sig-
ificantly benefits from domain-specific language models by a high
argin due to challenges such as sub-word vocabulary set. However,
e note that training a domain-specific language model is quite ex-
ensive and also not feasible for all domains. Therefore, in this work,
e focus on minimizing this gap between the performance of general-
urpose language models and domain-specific biomedical language
odels by increasing the performance of fine-tuned general-purpose

anguage models through a self-supervised PLM selection strategy for
he Biomedical QA tasks.

2 https://microsoft.github.io/BLURB/
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2.2. Model integration

To the best of our knowledge, the potential synergy between
general-purpose language models has not been explored in past litera-
ture. Therefore, our work is among the first to investigate the role of
general-purpose PLM selection in the context of biomedical question
answering. However, the idea of interpolating a set of methods to
achieve a goal has been previously explored in other tasks, particularly
in the information retrieval and natural language processing commu-
nities. In natural language processing, model interpolation involves
combining the output of multiple models to improve performance on a
given task [27–29]. This technique has been used in various NLP tasks,
including machine translation, text classification, and information re-
trieval [30–32]. The basic idea is to assign a weight to each model’s
output and then combine them to produce a final prediction [33,34].
The weights can be determined by optimizing a loss function, such as
cross-entropy, on a validation set. Other techniques, such as ensembling
methods (e.g., bagging, boosting, or stacking), have been used to
improve the robustness and accuracy of NLP models [35,36]. Overall,
model interpolation is a powerful technique for improving NLP model
performance, especially in cases where a single model may not perform
well on its own [37]. It allows the combination of complementary
strengths from multiple models, resulting in more accurate and robust
predictions.

Interpolation of different methods and investigating the synergy
between them to tackle a specific task has also been widely used in
Information Retrieval problems. In information retrieval, interpolation
between rankers has been shown to boost performance over a single
retriever because each ranker can potentially address a different sub-
set of queries [38–43]. Researchers have shown effectiveness at both
training and inference levels [39,40]. For example, Wang et al. [38]
demonstrated that interpolating traditional bag-of-word-based sparse
retrievers, such as BM25, is necessary for neural-based dense retrievers
to perform effectively, and the gains provided by the interpolation
are significant. Interpolation has also been explored for web search
ranking. The authors in [44] showed that model interpolation, although
simple, not only obtained significant boosts in performance but also
increased method generalizability.

Our work in this paper is inspired by the idea of using multiple
retrievers in the information retrieval community. Several researchers
have shown that when answering a query, different retrievers may
show dissimilar performances, whereby some retrievers are more ef-
fective on a certain subset of queries. Therefore, these researchers
suggest that a query routing strategy could be used, which would
determine on a case-by-case basis which retriever would be used to
address the incoming query; hence, collectively maximizing retrieval
effectiveness [43,45,46]. Similarly, in this paper, we leverage the idea
of query routing by implementing a self-supervised PLM selection strat-
egy that would decide which general-purpose language model would
be best for answering a certain incoming question in the biomedical
question-answering task.

3. Problem definition

The focus of our work in this paper is on the Biomedical Question
Answering (QA) task. The objective of this task is to predict the exact
answer (yes/no) to a given input question, given a relevant snippet.

More formally, given a set of questions 𝑄 = {𝑞1, 𝑞2, 𝑞3,… ,
𝑞𝑚}, aligned with their relevant snippets set 𝑅 = {𝑟𝑞1 , 𝑟𝑞2 , 𝑟𝑞3 ,… , 𝑟𝑞𝑚}
and their ideal answers 𝐴 = {𝑎𝑞1 , 𝑎𝑞2 , 𝑎𝑞3 ,… , 𝑎𝑞𝑚} where 𝑎𝑞𝑖 ∈ {1, 0}
is a binary value for class 1 as yes and class 0 as no, we find the
answer (yes/no) for each question 𝑞𝑖 ∈ 𝑄 by employing a fine-tuned
language model 𝐿 to encode each question 𝑞𝑖 ∈ 𝑄 and its relevant
snippets 𝑟𝑞𝑖 ∈ 𝑅. As such, we obtain the predicted answer to 𝑞𝑖 and 𝑟𝑞𝑖
as 𝑓 (𝑞 , 𝑟 |𝐿) where 𝑓 (𝑞 , 𝑟 |𝐿) ∈ {1, 0}.
3

𝐿 𝑖 𝑞𝑖 𝐿 𝑖 𝑞𝑖
One of the most well-known standard datasets for biomedical ques-
tion answering is based on the BioASQ challenge3 [26,47,48]. BioASQ
is a large-scale question-answering challenge, addressing a wide range
of a question-answering tasks for yes/no, factoid, list and summary
questions. In this work, similar to [5] and without loss of generality,
we focus on yes/no questions and treat it as a classification task.
We adopt BioASQ7b and BioASQ8b datasets, which are specifically
released for the yes/no question-answering challenge. Table 1 shows
a few examples of questions aligned with their relevant snippets and
ideal answers from the BioASQ7b dataset.

In the context of the biomedical question answering task, we first
study the potential of leveraging general-purpose language models for
addressing domain-specific tasks by exploring to what extent different
general-purpose PLMs overlap with each other in terms of success in
answering biomedical questions. We investigate whether there is a sig-
nificant number of non-overlapping questions that can be answered by
different general-purpose PLMs. Our work shows that general-purpose
PLMs do in fact have complementarity when addressing different ques-
tions. As such, it might be possible to maximize the potential of employ-
ing various general-purpose PLMs in order to address a domain-specific
task.

Given general-purpose PLMs perform differently depending on the
question, we focus on developing a self-supervised PLM selection strat-
egy that would effectively decide which PLM each input question would
need to be routed to for maximal efficiency. We find that such a self-
supervised selection strategy can be quite effective in selecting the most
appropriate general-purpose PLM per input question and can lead to
improved performance on the biomedical questions answering task.

An effective supervised selection strategy over general-purpose
PLMs would reduce the need for domain-specific PLMs, which can be
expensive in terms of time and computation needed to train them.
More importantly, this approach would be beneficial in domains where
there is not enough domain-specific data available for training a
large language model. For these reasons, our proposed strategy can
increase the performance of general-purpose PLMs on domain-specific
tasks. We perform experiments on four different general-purpose PLMs,
namely BERT, RoBERTa and their distilled versions DistilBERT and
DistilRoBERTa.

We note that for replicability purposes, we made our code publicly
available at https://github.com/Narabzad/Language-model-selection-
strategy

4. Synergy between general-purpose PLMs

The core idea behind our work in this paper is to investigate
the potential of utilizing general-purpose PLMs for addressing the
domain-specific biomedical question answering task. More specifically,
we investigate whether general-purpose PLMs have complementary
characteristics that would allow us to systematically choose between
them to increase their individual performances. In other words, we
are interested in systematically deciding which general-purpose PLMs
would be the best for answering each question on a case-by-case basis
in order to improve overall performance. To explore whether such
complementarity exists between different general-purpose PLMs, we
assume that there exists an Oracle that is able to determine the best
general-purpose PLM on per input question basis. Such an Oracle would
allow us to route each incoming question to the best general-purpose
PLM and hence will provide the best possible overall performance.

More formally, given a set of general-purpose PLMs 𝐿 = {𝐿1, 𝐿2...,
𝐿𝑛}, where 𝐿𝑖 is a general purpose language model, we define an oracle
score 𝑆 for question set 𝑄 = {𝑞1, 𝑞2,… , 𝑞𝑚} accompanied with their
relevant snippet set 𝑅 = {𝑟1, 𝑟2,… , 𝑟𝑚} and PLM set 𝐿 as follows:

𝑆(𝑄,𝑅,𝐿) = 1
𝑚

𝑚
∑

𝑗=1
𝑚𝑎𝑥{𝐴𝐶𝐶(𝑞𝑗 , 𝑟𝑗 , 𝐿𝑖)|𝑖 ∈ {1, 2,… , 𝑛}} (1)

3 http://www.bioasq.org/

https://github.com/Narabzad/Language-model-selection-strategy
https://github.com/Narabzad/Language-model-selection-strategy
https://github.com/Narabzad/Language-model-selection-strategy
http://www.bioasq.org/


Journal of Biomedical Informatics 146 (2023) 104486N. Arabzadeh and E. Bagheri
Table 1
Examples of questions from BioASQ7 aligned with their relevant snippets and the ideal answer.
Questions Is Pim-1 a protein phosphatase? Is selenocysteine an aminoacid?

Relevant
Snippet

Pim-1 proto-oncogene, serine/threonine kinase (PIM-1)
phosphorylates a series of substrates to exert its
oncogenic function in numerous malignancies. The
Pim1 serine/threonine kinase is associated with
multiple cellular functions including proliferation,
survival, differentiation, apoptosis, tumorigenesis,
immune regulation and inflammation in vertebrate

Selenocysteine (Sec), a rare genetically encoded
amino acid with unusual chemical properties, is
of great interest for protein engineering.
Selenocysteine (SeC) is a naturally available
Se-containing amino acid that displays splendid
anticancer activities against several human
tumors.

Answer No Yes
Fig. 1. Oracle performance with different sets of general-purpose PLMs complementing
each other in terms of accuracy when addressing the biomedical question-answering
task. The diagonal cells indicate single general-purpose PLM |𝐿| = 1 and the rest show
the performance when |𝐿| = 2.

where:

𝐴𝐶𝐶(𝑞𝑗 , 𝑟𝑗 , 𝐿𝑖) =

{

1 𝑎𝑞𝑗 = 𝑓𝐿(𝑞𝑗 , 𝑟𝑞𝑗 |𝐿𝑖)

0 𝑜.𝑤
(2)

As mentioned earlier, 𝑎𝑞𝑗 and 𝑓𝐿(𝑞𝑗 , 𝑟𝑞𝑗 |𝐿𝑖) represent the true answer
and predicted answer to question 𝑞𝑗 with regards to the relevant snippet
𝑟𝑗 using a PLM 𝐿𝑖. Here, 𝐴𝐶𝐶(𝑞𝑗 , 𝑟𝑗 , 𝐿𝑖) is a proxy for the accuracy of
PLM 𝐿𝑖 in addressing question 𝑞𝑗 and it is 1 when there exists a PLM
that is able to answer the question correctly. Otherwise, when there is
no PLM in 𝐿 that can answer question 𝑞𝑗 properly, 𝐴𝑐𝑐(𝑞𝑗 , 𝑟𝑗 , 𝐿𝑖) would
be 0. Simply put, oracle score 𝑆 indicates the percentage of questions
that can be answered correctly given at least one PLM from set 𝐿 and
exhibits the potential of PLM set 𝐿 for answering the question set 𝑄
correctly.

Fig. 1 presents the Oracle score for a set of PLMs when experiment-
ing on the BioASQ7b task. The diagonal cells indicate the performance
of the PLM when deployed on a standalone basis, and the other
bars display the Oracle when integrating the PLM with another PLM
through the Oracle. Each cell on the diagonal shows the performance
of the general-purpose PLM on the QA task. The subsequent cells show
the performance of the Oracle, which is the result of systematically
selecting from among two PLMs from the same row and column,
i.e., |𝐿| = 2. The difference between the diagonal cell and the rest
in the column/row is the maximum amount of performance improve-
ment that can be obtained through an Oracle when considering two
general-purpose PLMs. For instance, when only employing BERT to
encode the question and its relevant snippet, we obtain an accuracy
4

of 0.71 (rounded by two decimal points for clearer visualization);
however, when the Oracle considers both BERT and DistilBERT,
the accuracy increases by 11.2% reaching 0.79 . Similarly, when BERT
and DistilRoBERTa are considered by the Oracle, we observe an
improvement of 23.2% with an accuracy of 0.87.

Furthermore, we would like to draw attention to the performance
of the domain-specific PLM PubMedBERT on the QA task reported in
Fig. 1. As shown in this Figure, the accuracy of PubMedBERT is 0.871.
We observe that when this domain-specific PLM is considered by the
Oracle in collaboration with other general-purpose PLMs, its perfor-
mance increases. For instance, when PubMedBERT and RoBERTa are
integrated through the Oracle, we can observe an increase of 8.2% over
PubMedBERT showing an overall accuracy of 0.94.

In addition to a suite of general-purpose language models
(DistilBERT, BERT, DistilRoBERTa, and RoBERTa), our reper-
toire includes two mixed-domain language models. These models were
initially based on the BERT architecture and underwent further pre-
training using domain-specific data from other sources including
PubMed and the MIMIC dataset [25]. As depicted in Fig. 1, the oracle
demonstrates the potential for significantly enhancing the performance
of mixed-domain pre-trained language models through a systematic
selection of the optimal model for each instance. For example, while
BioBERT achieves a standalone accuracy of 0.81, we observe that
by selectively choosing the appropriate pre-trained language model
between BioBERT and DistilRoBERTa on a per-question basis, the
performance can be improved up to 0.89.

Overall, we make the following observations:

1. The systematic selection between different general-purpose PLMs
through an Oracle has the potential to improve the performance
of each individual general-purpose PLM and show competitive
performance to domain-specific PLMs;

2. The systematic selection between different mixed-domain and
general-purpose PLMs through an Oracle has the potential to
improve the performance of each individual mixed-domain PLM
and has the potential to show superior performance to pure
domain-specific PLMs;

3. The integration of domain-specific PLMs with general-purpose
ones will lead to increased performance over that of the domain-
specific PLMs leading to state-of-the-art performance.

Based on the above two observations, we hypothesize that while
single general-purpose language models are not capable of showing
competitive performance to domain-specific ones, there is potential
room for improving the performance of general-purpose language mod-
els on domain-specific tasks by leveraging the synergy between them.
In the following, we propose a systematic methodology to leverage this
complementary behaviour between general-purpose language models
to leverage the best out of them and be able to increase their perfor-
mance on domain-specific tasks. Such an approach would reduce the
need for domain-specific language models.
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Fig. 2. Overview of the proposed integration process and model architecture.
. Self-supervised PLM selection

Our observations show that an ideal selection between two general-
urpose PLMs through an Oracle has the potential to improve the
erformance of each PLM and the selection between a general purpose
nd a domain-specific PLM could potentially outperform the current
tate of the art on biomedical QA task. Here, our objective is to show
hether it would be possible to estimate the Oracle. We refer to the

task of estimating the Oracle as PLM Selection and define it as follows:
Given a question 𝑞 and its a relevant context 𝑟, its exact answer

𝑎 ∈ {𝑦𝑒𝑠 = 1, 𝑛𝑜 = 1}, and a set of PLMs 𝑆 = {𝐿1, 𝐿2,… , 𝐿𝑛}, the
LM Selection task aims to select 𝐿𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ∈ 𝑆, which would lead to the

highest performance when answering q, as:

𝑓𝐿(𝑞, 𝑟|𝐿𝑂𝑝𝑡𝑖𝑚𝑎𝑙) = min
∀𝐿𝑖∈𝑆

{|𝑎 − 𝑓𝐿(𝑞, 𝑟|𝐿𝑖)|} (3)

where 𝑓𝐿(𝑞, 𝑟|𝐿) is the predicted answer for question 𝑞 and its relevant
snippet 𝑟 when encoded by PLM 𝐿.
5

In order to select 𝐿𝑂𝑝𝑡𝑖𝑚𝑎𝑙, the PLM that is most likely to answer
the question correctly, from a set of language models 𝐿, we estimate
the likelihood of a PLM being more successful on any given subset of
questions. To this end, we aim to build a classifier which predicts the
suitable language model on per input basis. To train such a classifier
that routes each sample to a language model that can address the
question, we first split our training set into two portions, 𝑇𝑑 and 𝑇𝑐 .
Given |𝐿| = 2 i.e., 𝐿 = {𝐿1, 𝐿2} and without loss of generality,
we fine-tune PLMs 𝐿1 and 𝐿2 on our domain-specific task on the
portion of our train set, namely dataset 𝑇𝑑 , to obtain fine-tuned 𝐿′

1
and 𝐿′

2, respectively. Then, based on 𝐿′
1 and 𝐿′

2, we assess questions
from the other unseen portion of the train data (Dataset 𝑇𝑐 which
has been separated for training the classifier) where 𝑇𝑑 ∩ 𝑇𝑐 = ∅. We
evaluate 𝐿′

1 and 𝐿′
2 on dataset 𝑇𝑐 to detect which questions can be

answered correctly with each of the fine-tuned language models. While
evaluating, we generate self-supervised labels on which PLM succeeded
in answering the question correctly. Particularly, given 𝐿′

1 and 𝐿′
2, a set

of questions 𝑄, their relevant snippets 𝑅 and answers 𝐴, we generate
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Fig. 3. Overview of the results from the experiments.
labels for each task input {𝑞, 𝑟, 𝑎} as follows:

𝐿𝑀𝑜𝑟𝑎𝑐𝑙𝑒(𝑞𝑖, 𝑟𝑖|𝐿) =

{

0 𝑓𝐿(𝑞𝑖, 𝑟𝑖|𝐿′
1) = 𝑎𝑖

1 𝑓𝐿(𝑞𝑖, 𝑟𝑖|𝐿′
2) = 𝑎𝑖

(4)

Here, essentially based on training samples in 𝑇𝑐 , we determine
which PLM is most suited for answering each question in 𝑇𝑐 ; hence
generating self-supervised labels. In case both PLMs answer a question
correctly or both fail to answer it correctly, we randomly select one of
the PLMs when curating the self-supervised labels.

Based on these self-supervised labels, we train a classifier using
the contextualized representation of 𝑞 and 𝑟 encoded by the selected
language model from 𝐿 to select the PLM that is more likely to answer
each question correctly. More information on the structure of the
6

classifier can be found in Section 6.1. The base PLM for the classifier
can be either 𝐿′

1 or 𝐿′
2. Fig. 2(a) shows the overview of our proposed

approach. Once we train the PLM Selection classifier, given a question
and its relevant snippet (𝑞, 𝑟), we first decide which PLM would be the
most relevant for the question to be routed to and answer the question
based on the selected PLM.

6. Experiments and results

6.1. Experimental setup

Since the focus of this paper is to investigate the impact of general-
purpose PLMs on the biomedical question answering task with different
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PLMs, we use the Transformer-based architecture, which is the most
common approach and has shown promising results on many down-
stream tasks [49–51]. Similar to [5], we fine-tune PLMs by first process-
ing the input sequence and performing task-specific transformations
such as appending a special instance marker (e.g., [𝐶𝐿𝑆]). The trans-
formed input is then tokenized using the PLM vocabulary, and fed into
the PLM to generate the contextualized representations of the input.
On top of the embedded vector of the input sequence, a task-specific
prediction model generates the final output. Task-specific prediction
layer parameters are jointly fine-tuned along with the underlying neu-
ral language model. More specifically, for fine-tuning PLMs to address
the biomedical QA task, the input sequence, i.e., the question 𝑄, as
well as the accompanying snippet for each question 𝑅, are concatenated
with each other through the [𝑆𝐸𝑃 ] token. Further, a [𝐶𝐿𝑆] token is
prepended to the input sequence. As such, the Transformer input takes
the form of [𝐶𝐿𝑆]𝑄[𝑆𝐸𝑃 ]𝑅[𝑆𝐸𝑃 ]. The [𝐶𝐿𝑆] is then used for the final
classification. Finally, we include a linear classification layer with cross-
entropy loss to reduce dimensionality. The overview of the described
architecture is shown in Fig. 2(b).

We selected the learning rate from {1𝑒 − 5, 3𝑒 − 5, 5𝑒 − 5}, set
batch size to 16 and epoch number from {1, 2,… , 20}. In practice and
similar to what was reported in [5], we observe that the development
performance is not sensitive to the hyper-parameter selection.

Further, we consider BioASQ8b train set as our 𝑇𝑐 dataset to train
the classifier. Therefore, we evaluate the performance of PLMs on the
BioASQ8b train set and train the second step of our proposed approach,
i.e., the classifier. For each pair of PLMs, we use the lighter model as
the trained classifier to avoid extra computational overhead. We note
that the number of parameters for the models under experiments of
this paper is as follows: BERT-base-uncased4 (110M), DistilBERT-base-
uncased5 (66M), Roberta-base6 (125M), DistilRobBERTa-base7 (82M),
Bio_ClinicalBERT8 (110M), BioBERT9 (110M) and PubMedBERT10

(110M). In the case of deciding the LLM between BERT and PubMed-
BERT, we employ BERT as the classifier since it is a general-purpose
language model and it is not dependent on the domain. We leave
further explorations on the choice of appropriate PLM for the classifier
for future works.

BioASQ7b and BioASQ8b have 670 and 884 yes/no questions in
their train set, respectively. We report the end-to-end performance
of our proposed approach as well as the baselines on BioASQ7b test
set, which includes 140 questions. Finally, we use the Hugging Face
public releases11 of BERT [4], RoBERTa [52], DistilBERT and
DistilRoBERTa [53] to construct our set of general-purpose PLMs.

6.2. Results and findings

Fig. 3(a) shows the results of our experiments, where the title
of each sub-figure represents the PLM that was used in the second
step of the pipeline. For example, considering the BERT sub-figure in
Fig. 3(a), the grey bars represent the performance of BERT under a
standalone condition, i.e., 𝐿 = {𝙱𝙴𝚁𝚃}. The three green bars in this
sub-figure show the performance of the Oracle when selecting the PLM
from 𝐿 = {𝙱𝙴𝚁𝚃, 𝙳𝚒𝚜𝚝𝚒𝚕𝙱𝙴𝚁𝚃}, 𝐿 = {𝙱𝙴𝚁𝚃, 𝙳𝚒𝚜𝚝𝚒𝚕𝚁𝚘𝙱𝙴𝚁𝚃𝚊} and 𝐿 =
{𝙱𝙴𝚁𝚃, 𝚁𝚘𝙱𝙴𝚁𝚃𝚊}, respectively. Furthermore, the orange bars illustrate
our proposed approach when selecting PLMs between BERT and each

4 https://huggingface.co/bert-base-uncased
5 https://huggingface.co/distilbert-base-uncased
6 https://huggingface.co/roberta-base
7 https://huggingface.co/distilroberta-base
8 https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
9 https://huggingface.co/dmis-lab/biobert-v1.1

10 https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-
ncased-abstract-fulltext
11
7

https://huggingface.co/models t
of the mentioned PLMs on a per-question basis. A similar explanation
can be adapted to other sub-figures in Fig. 3(a).

As shown in each of the sub-figures, selecting PLMs from the set of
two general-purpose PLMs instead of using one general-purpose PLM
to encode all the questions and relevant snippets leads to performance
improvements over the initial general-purpose PLM. One of the most
significant boosts happens with lighter models such as DistilBERT.
While DistilBERT shows a relatively lower performance when used
in isolation, it shows great complementary behaviour with other PLMs
and leads to notable performance improvement when used within
the context of our proposed selection strategy. This means that while
DistilBERT fails to show a good performance on all of the questions,
there are specific subsets of questions that can be answered with Dis-
tilBERT very well. Hence, as shown in Table 2, when choosing from
two of the lightest PLMs i.e., DistilBERT and DistilRoBERTa, we
observe one of the largest performance improvements, i.e., an increase
of 23.16% from 0.679 to 0.836.

Table 2 shows the performance of the Oracle in contrast to our
proposed approach in terms of accuracy and percentage of improve-
ment compared to the base PLM. As shown in Table 2, while all the
PLMs showed statistically significant improvements measured based
on a paired t-test (𝑝-value < 0.05), DistilBERT enjoyed the largest
performance improvement when incorporated through our selection
strategy with other PLMs, namely 15.79%, 23.16% and 20.0% improve-
ment when used in conjunction with BERT, DistilRoBERTa and
RoBERTa, respectively.

Overall, the results in Table 2 and Fig. 3(a), shed light on the
research questions we raised and show that it is possible to adopt a
selection strategy that jointly utilizes different general-purpose PLMs
and boosts the performance of each general-purpose PLM in addressing
domain-specific question answering task. In fact, while the state-of-the-
art domain-specific PLM, PubMedBERT shows an accuracy of 0.878,
the integration of DistilRoBERTa and DistilBERT through our
proposed selection strategy shows the overall performance of 0.836,
which is competitive to PubMedBERT and over 10% more than the
best-performing general-purpose PLM.

Additionally, we are interested in exploring the distribution of
predicted classes between the set of general-purpose language models.
This would show how balanced the model’s predictions are with regard
to different classes of language models. To investigate the distribution
of predicted classes between two PLMs used in the proposed language
model selection strategy, we report the percentage of predicted classes
in Fig. 3(b) between each pair of the two language models. On average,
on the six pairs of general purpose language models presented in
Fig. 3(b), (e.g., {DistilRoBERTa, RoBERTa}, {BERT,RoBERTa},
. . . ), the distribution of predicted classes is 27% (dark grey) to 73%
(light grey bars) in Fig. 3(b). As shown in this Figure, while both models
had contributions towards the gold labels, the distribution of model
choices is rather biased towards the model represented by the lighter
bar, which is often the larger model. For example, RoBERTa models
have better performance than BERT models and full-fledged models
usually have better performance compared to their distilled versions.

For example, when 𝐿 = {𝙳𝚒𝚜𝚝𝚒𝚕𝙱𝙴𝚁𝚃, 𝙳𝚒𝚜𝚝𝚒𝚕𝚁𝚘𝙱𝙴𝚁𝚃𝚊} are used in
combination with each other through the selection strategy, we observe
that in 34% of the cases, the correct answer is selected by Distil-
BERT and in 66% of the cases, the answers were selected by Dis-
tilRoBERTa. It is interesting that this high complementary behaviour
between the two language models also leads to one of the highest
improvements over both of the initial PLMs, i.e., more than 10% and
23% over the performance of DistilBERT and DistilRoBERTa,
respectively.

In Table 3, we show two examples where DistilBERT and Dis-
ilRoBERTa were both successful in answering only one of the two
uestions correctly. For example, the correct answer to the question
Is Pim-1 a protein phosphatase?’ is ‘No’. DistilRoBERTa was able

o predict the answer correctly; whereas, DistilBERT incorrectly

https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/distilroberta-base
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/models
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Table 2
Result of our proposed approach in terms of percentage of improvement. The percentage is rounded to 2 decimal places based on the actual
accuracy numbers.
BERT Oracle Ours % 𝛥

Original – 0.707 –
DistilBERT 0.786 0.771 9.09%
DistilRoBERTa 0.871 0.821 16.16%
RoBERTa 0.857 0.829 17.17%

RoBERTa Oracle Ours % 𝛥

Original – 0.757 –
DistilBERT 0.836 0.821 8.49%
DistilRoBERTa 0.843 0.793 4.72%
BERT 0.857 0.843 11.32%

DistilBERT Oracle Ours % 𝛥

Original – 0.679 –
BERT 0.786 0.786 15.79%
DistilRoBERTa 0.843 0.836 23.16%
RoBERTa 0.836 0.814 20.00%

DistilRoBERTa Oracle Ours % 𝛥

Original – 0.757 –
BERT 0.871 0.8 5.66%
DistilBERT 0.843 0.836 10.38%
RoBERTa 0.843 0.829 9.43%
Table 3
Sample Test Questions and Responses by different LLMs and Their Interpolation.
(a) Sample questions that could not be answered correctly with neither of the
general-purpose language models but were successfully answered by our approach.

Question DistilBERT
answer

DistilRoBERTa
answer

Our method
answer

True
answer

-Is Pim-1 a protein
phosphatase?

Yes No No No

-Is celecoxib effective for
treatment of amyotrophic
lateral sclerosis?

No Yes No No

(b) Examples where the answer to the question is ‘‘No’’ but the end-to-end results of our proposed methodology of
𝐿 = {𝑃𝑢𝑏𝑀𝑒𝑑𝐵𝐸𝑅𝑇 ,𝐿𝑔} where 𝐿𝑔 is a general purpose language model sometimes failed to predict correctly. 𝐿𝑔 ∈
{DistilBERT, DistilRoBERTa, BERT, RoBERTa}.

Question Answer Predicted answer with 𝐿 = {𝑃𝑢𝑏𝑀𝑒𝑑𝐵𝐸𝑅𝑇 ,𝐿𝑔}

DistilBERT DistilRoBERTa BERT RoBERTa

Is lithium effective for treatment of amyotrophic lateral sclerosis? No No No Yes No
Does Groucho related gene 5 (GRG5) have a role only in late development? No No Yes No No
Has the protein SIRT2 been associated to cervical cancer? No Yes Yes No Yes
Is the NLM medical text indexer (MTI) still useful and relevant? No No No No Yes
Are artificial blood cells available? No Yes Yes No Yes
Are cardenolides inhibitors of Na+/K+ ATPase? No No Yes No No
Is myc a tumour suppressor gene? No Yes No Yes Yes
predicted the answer to this question as ‘Yes’. For another question
‘Is celecoxib effective for treatment of amyotrophic lateral sclerosis?
’, whose correct answer is ‘No’, the opposite happens. In other words,
DistilBERT predicted the answer correctly as ‘No’, while Distil-
RoBERTa was not successful in answering the question properly. If any
of the two PLMs is used to answer both questions, we would not be able
to answer both correctly. However, using our proposed methodology,
we were able to select the PLM which is able to answer each question
correctly, i.e., for the first question, we select DistilRoBERTa to
answer the question and for the second one, we employ DistilBERT.
As a result, we are able to answer both questions correctly.

We conducted a detailed analysis of the performance of the state-
of-the-art domain-specific PLM and our proposed approach. Fig. 4(a)
illustrates our findings, showing each question in our test set individu-
ally. The filled bars indicate that the question was answered correctly
using the proposed approach, while the non-filled bars indicate that
the question was answered mistakenly by that method. We present
two of our computationally least expensive combinations of PLMs,
i.e., DistilBERT and DistilRoBERTa, as well as the computa-
tionally most expensive pairs under the experiment, i.e., BERT and
oBERTa. As shown in the Figure, even when using distilled and

ight PLMs, our proposed approach can accurately answer the major-
ty of the questions that PubMEDBERT answered correctly. In other
ords, the general-purpose models can successfully capture critical
omain-specific features.

Finally, we investigate the potential benefits of our proposed se-
ection strategy for both mixed-domain and domain-specific PLMs.

e conduct similar experiments, selecting between the state-of-the-
rt biomedical domain-specific PLM, PubMedBERT, and mixed-domain
8

PLMs represented by BioBERT and BioClinicalBERT, utilizing
general-purpose PLMs including BERT, RoBERTa, DistilBERT, and
DistilRoBERTa. The results are presented in Table 4. As shown,
both mixed-domain PLMs, BioBERT and BioClinicalBERT, ex-
hibit performance improvements when combined with general-purpose
language models. However, as anticipated, the percentage of improve-
ment compared to the original model is slightly lower than when
solely employing the PLMs from general-purpose language models. In
addition in Fig. 3(c), we observe that our proposed PLM selection
strategy boosts the performance of PubMedBERT as the state-of-the-
art domain-specific PLM. Overall, the selection between PubMedBERT
with RoBERTa leads to over 5.69% of improvement by lifting up the
performance from 0.879 to 0.929.

We also conducted a detailed analysis of the performance of our
approach, which combines a state-of-the-art domain-specific PLM with
a general-purpose PLM. Upon examining the incorrect results, we dis-
covered that over 85% of errors occurred when the model mistakenly
predicted an answer as ‘‘yes’’ instead of ‘‘no’’. In Table 3, we present
examples where the correct answer to all questions is ‘‘no’’, but our
approach failed to predict them accurately. For example, as shown in
Table 3, DistilRoBERTa wrongly predict the answer as ‘‘Yes’’ in
4 out of the 7 examples. We hypothesize that this could be due to
the unbalanced training data that the question-answering model was
exposed to, which may have resulted in a bias towards predicting the
‘‘yes’’ label.

One reason why general-purpose language models may fail to per-
form as well as domain-specific ones is due to out-of-vocabulary prob-
lems. In [5], it was found that training a domain-specific language
model from scratch has the advantage of having in-domain vocabu-
lary. For example, when using the original vocabulary of BERT, some
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Fig. 4. Detailed insights on model performance.
Table 4
Results of the proposed selection strategy over domain-specific language model (PubMedBERT) and mixed-domain PLMs (BioBERT and
BioClinicalBERT with different general-purpose PLMs ∈{BERT,DistilRoBERTa,DistilBERT,RoBERTa} in terms of accuracy and
percentage of improvement.

PubMedBERT BioBERT BioClinicalBERT

Oracle Ours % 𝛥 Oracle Ours % 𝛥 Oracle Ours % 𝛥

Original – 0.879 – – 0.814 – – 0.757 –
BERT 0.921 0.900 2.44% 0.864 0.844 3.72% 0.829 0.821 8.49%
RoBERTa 0.943 0.929 5.69% 0.886 0.857 5.30% 0.879 0.857 13.21%
DistilBERT 0.914 0.907 3.25% 0.843 0.829 1.79% 0.829 0.814 7.55%
DistilRoberta 0.929 0.914 4.07% 0.886 0.879 7.93% 0.901 0.893 17.92%
s
i
a
t
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iomedical terms such as ‘‘Naloxon’’ as a drug name or ‘‘Acetyltrans-
erase’’ as a gene name would be broken down into na-lo-xon-e and
ce-ty-lt-ran-sf-eras-e, respectively. Here, we compared the number
f tokens in the BioASQ7b questions when tokenizing with BERT,
oBERTa, and PubMedBERT to see if general-purpose language mod-
ls do in fact break down domain-specific terms. We hypothesize that
reaking down tokens might hurt performance since the semantics
f the terms would be compromised. In Fig. 4(b), we plotted the
istogram of the number of tokens based on each LM tokenizer. As
9

s

hown in this Figure, PubMedBERT has the lowest number of tokens,
.e., its tokenizer does not break down domain-specific terms as much
s BERT and RoBERTa. We note that the mixed-domain PLMs used in
his study all share their vocabulary with BERT since they have been
nitialized with this language model and then continued pretraining
n domain-specific data. This analysis confirms the observation in [5],
hich suggests that the out-of-vocabulary problem could be one of the

easons why domain-specific language models perform better under a
tandalone setting.
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We conclude that not only does the systematic selection between
general purpose PLMs leads to notable performance improvement and
competitive results to domain-specific PLMs, but also their systematic
integration through our selection strategy with domain-specific PLMs
leads to improvements over state-of-the-art results.

7. Computational analysis

In this section, we undertake a comprehensive computational analy-
sis to explore the trade-offs and considerations associated with our pro-
posed approach. We begin by examining the computational expenses
involved in training mixed-domain or domain-specific language models
and compare them against our strategy. As highlighted earlier in the
introduction, training a domain-specific PLM from scratch presents
significant computational challenges. For instance, the biomedical PLM
PubMedBERT, trained on PubMed abstracts, necessitated the use of
powerful hardware resources, including 16 v100 GPUs on a DGX-
2 machine, with a total cost exceeding 400K USD. This cost acts
as a notable barrier, limiting access for many researchers and insti-
tutions. Furthermore, the time required for training domain-specific
PLMs is substantial. PubMedBERT, as an example, demanded five
days of training on the aforementioned computational setup, further
exacerbating the challenges associated with developing and deploying
domain-specific PLMs.

In terms of computational analysis of our proposed approach, it
may appear that training two distinct language models introduces
additional computational overhead. However, we emphasize that fine-
tuning for downstream tasks is notably less resource-intensive, both in
terms of time and computational requirements, compared to training
a language model from scratch. For instance, fine-tuning BERT for
question answering in our experiments utilized a single RTX-3090 GPU,
with training times averaging less than 10 min due to limited available
training data for the task. Consequently, the computational demands
for this process were modest, with no need for high GPU numbers or
extensive memory resources.

In terms of storage considerations, our approach requires the storage
of two fine-tuned language models instead of one. Despite this, the
relatively modest size of the models used in this paper, all consuming
less than 500MB of storage, renders the storage impact negligible. It
is worth noting that while this may not pose a significant concern for
smaller language models, the storage implications could become more
relevant when employing larger, higher-parameter models.

Turning to inference time, the average inference time for answering
questions using any of the seven fine-tuned language models in our
experiments, executed on an RTX-3090 GPU with 24 GB memory,
averaged 1.9 ms. Given sufficient GPU availability and time constraints,
we suggest parallel execution of both fine-tuned models to minimize
computational delay. Additionally, a classification step, which averaged
1.4 ms across all language models, adds minimal computational time
for decoding and classification. Thus, if parallel execution is possible,
no additional computational time is introduced, limited by the more
resource-intensive answering time of 1.9 ms. However, in cases of
resource constraints, a sequential approach involving classification fol-
lowed by answering with the selected PLM would result in an additional
1.4 ms.

In summary, the decision to train additional language models de-
pends on the specific application and computational constraints. This
analysis provides insights into optimizing the use of language models,
helping determine when to train new models or utilize existing ones,
10

thus fostering efficiency and sustainability.
8. Future works and concluding remarks

Domain-specific PLMs have shown strong performance on down-
stream domain-specific tasks. However, we argue that training domain-
specific PLMs is quite expensive in terms of time and computation.
Moreover, some domains suffer from a lack of abundant publicly avail-
able corpora for training PLMs. Therefore, in this paper, we study
whether it would be possible to employ general-purpose PLMs on
domain-specific tasks. We show that general-purpose PLMs have the
potential to complement each other and exhibit synergistic behaviour.
On this basis, we propose a self-supervised approach to integrate dif-
ferent general-purpose PLMs. We show that while general-purpose
PLMs might not be able to outperform domain-specific PLMs, they
can complement each others’ performance leading to better overall
performance. We conclude that selecting an appropriate PLM is a
lightweight strategy for using general-purpose PLMs that can show
competitive performance to domain-specific PLMs, yet does not require
as many resources for being trained.

To the best of our knowledge, this is the first work which inves-
tigates the synergy between different PLMs specifically in the context
of the biomedical QA task. Thus, we hope that this work will open up
many future avenues for IR and NLP communities to build on general-
purpose PLMs, which are computationally less demanding and can be
considered greener and more environmentally-friendly models compared
to domain-specific PLMs that require significant resources to be trained.

In our future work, we are interested in addressing the limitations
of the current work by exploring the following directions:

• While end-to-end performance is limited to the degree of com-
plementarity of the integrated models, in the experiments in this
paper, we show that all pairs of investigated language mod-
els have a promising degree of complementarity, which lead
to significant improvement when leveraging our proposed strat-
egy for this specific task. However, we believe that applying a
similar methodology to other domain-specific PLMs and tasks
could benefit the community by showing that our approach is
generalizable.

• As a pioneering study in strategic PLM selection, this research
presents early findings, leaving ample room for further explo-
ration and generalization. Initially, we acknowledge the need to
delve into the scalability of our proposed approach. Although
our methodology exhibits adaptability to the inclusion of more
than two PLMs simultaneously, it is conceivable that increased
complexity in classification tasks could demand larger training
datasets. Thus, a valuable avenue for future research lies in
empirically gauging the potential of extending our approach to
incorporate multiple PLMs. Additionally, we recognize that the
experiments in this work were confined to binary question an-
swering, which raises valid concerns about the applicability of
our findings across broader contexts. To address this, we envi-
sion broadening the scope of our systematic PLM selection tech-
nique beyond binary question answering. This expansion could
encompass a variety of tasks, including question answering, re-
trieval, named entity recognition, document classification, and
other downstream tasks pertinent to information retrieval and
natural language processing. By doing so, we aim to establish the
versatility and practicality of our approach across a spectrum of
real-world applications.

• Although our proposed strategy is clearly less expensive than
training a PLM from scratch, further investigation into the added
complexity and computational overhead would be useful to quan-
tify this advantage;

• Systematically investigating why different PLMs complement each
other and what are the most important factors affecting this
complementary behaviour, would provide beneficial insights to
the community for further capitalization on this synergy for other

downstream applications.
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